Countable Jauch-Piron Logics

Peter G. Ovchinnikov¹

Received April 12, 1992

It is shown that there exist non-Boolean unital and countable quantum logics which are Jauch-Piron.

1. INTRODUCTION

The cardinality of Jauch-Piron logics appears to be a very important aspect of the doctrine of the Jauch-Piron property (Jauch, 1968; Piron, 1976).

The finiteness conditions ensuring that a Jauch-Piron logic is a Boolean algebra were examined by Riittimann (1977), Bunce *et aL* (1985), and Rogalewicz (1991). The definitive result was obtained by Rogalewicz, **who** showed that the number of blocks of a unital Jauch-Piron" orthomodular poset is finite if and only if it equals 1.

On the other hand, Pták and Pulmannová (1989, 1991) conjectured that there are non-Boolean unital and countable Jauch-Piron logics. They supposed that the corresponding examples might be fairly complicated.

A celebrated theorem of Gleason (1957) yields almost appropriate examples, but unfortunately, uncountable ones.

In the present paper we develop a technique of countable models of orthomodular lattices to prove the existence of non-Boolean countable subortholattices of the orthomodular lattice of all subspaces of \mathbb{R}^n , $n \geq 3$, inheriting the Jauch-Piron property. Of course, such logics are necessarily unital.

2. COUNTABLE MODELS OF ORTHOMODULAR LATrICES

Recall that an orthomodular poset (OMP) (e.g., Ptak and Pulmannova, 1991) is a poset E with the greatest element 1 and an involutive antiautomorphism ': $E \rightarrow E$ satisfying the following conditions:

¹Department of Mathematics, Kazan State University, 420008 Kazan, Russia.

885

886 Ovchinnikov

(i) $x \in E \Rightarrow x + x' = 1$.

(ii) $x, y \in E, x \leq y \Rightarrow \exists z \in E(y=x+z)$.

(iii) $x, y \in E, x \perp y \Rightarrow x + y$ exists.

(Here for x, $y \in E$ we write $x \perp y$ provided $x \le y'$ and denote by $x + y$ the supremum of x and y in the case $x \perp y$.)

Obviously $\mathbf{0} \stackrel{\text{df}}{=} \mathbf{1}'$ is the smallest element of an OMP.

An orthomodular lattice (OML) (e.g., Kalmbach, 1983) is an OMP that is a lattice.

Let E be an OMP. A function $f: E \to \mathbb{R}$ is referred to as a finitely additive one provided

$$
x, y \in E, \quad x \perp y \implies f(x+y) = f(x) + f(y)
$$

Let $F(E)$ denote the set of all finitely additive functions $f: E \to \mathbb{R}$ that are bounded (i.e., satisfy the condition $\sup_{x \in E} |f(x)| < +\infty$). Then $F(E)$ is obviously a vector space over $\mathbb R$ with respect to pointwise addition and multiplication with scalars. [Moreover, $F(E)$ is a Banach space with respect to the norm $||f|| = \sup_{x \in E} |f(x)|$ ($f \in F(E)$).]

A finitely additive state on E is a finitely additive function $f: E \to \mathbb{R}$ such that $f(E) \subset [0, +\infty)$ and $f(1) = 1$. Let $S(E)$ denote the set of all finitely additive states on E. Obviously $S(E)$ is a convex subset of $F(E)$.

Let L be an OML. A subset $L_0 \subset L$ is said to be a subortholattice of L if L_0 is a sublattice of L, $1 \in L_0$ and $x \in L_0 \Rightarrow x' \in L_0$.

Definition 2.1. A model of L is a subortholattice L_0 of L such that any $f \in S(L_0)$ can be uniquely extended to an element of $S(L)$.

Now we state the main result of this section.

Theorem 2.2. If $F(L)$ is finite-dimensional, then there exists a countable model of L.

We start with two simple remarks of a very general character.

Let Ω be a set and V be a finite-dimensional subspace of the vector space \mathbb{R}^{Ω} of all functions f: $\Omega \rightarrow \mathbb{R}$ (throughout, operations on functions as vectors are supposed to be pointwise) and suppose dim $V = m$. Let us endow Ω with the topology induced by V (i.e., the weakest topology in Ω with respect to which all functions $f \in V$ are continuous).

Remark 2.3. There exists an *m*-element set $A \subset \Omega$ such that any function $f: A \rightarrow \mathbb{R}$ can be uniquely extended to a function from V.

Proof. By induction, for each $k \in \{0, ..., m\}$ there exists $A_k \subset \Omega$ such that card $A_k = k$ and any function $f: A_k \rightarrow \mathbb{R}$ can be extended to a function from V. Put $A=A_m$. QED

Remark 2.4. The topological space Ω has a countable base. In particular, Ω is separable.

Proof. Take basic vectors $e_1, \ldots, e_m \in V$. Consider finite intersections of sets that are of the form $e^{-1}((a, b))$, $a, b \in \mathbb{R}$ being rational. OED

Next, suppose dim $F(L) = m$. We endow L with the topology induced by $F(L)$. By Remark 2.3, there exists an *m*-element $A \subseteq L$ such that any function $f: A \rightarrow \mathbb{R}$ can be uniquely extended to a function from $F(L)$. By Remark 2.4, there exists a countable and dense $B \subseteq L$ satisfying $A \subseteq B$. Put

$$
U = \{f: L \rightarrow [-1, 1] | A \cup \{0\} \subset f^{-1}(0)\}
$$

and

$$
\Delta = \Gamma_0 \cup \Gamma
$$

where

$$
\Gamma_0 = \{ \{x, x'\} \mid x \in L \setminus \{0, 1\} \}
$$

$$
\Gamma = \{ \{x, y, z\} \subset L \setminus \{0\} \mid x + y + z = 1 \}
$$

Remark 2.5. Let $f: L \rightarrow \mathbb{R}$. It is easy to verify that f is finitely additive if and only if $f(0)=0$ and $\alpha \in \Delta \Rightarrow \sum_{x \in \alpha} f(x)=f(1)$. (The assertion as well as the following lemma can be extended to arbitrary OMPs.)

Lemma 2.6. For every $x \in L$ and $\varepsilon > 0$ there exists a finite set $\Delta_{x,\varepsilon} \subset \Delta$ satisfying

$$
f \in U
$$
, $\forall \alpha \in \Delta_{x,\varepsilon} \left(\sum_{y \in \alpha} f(y) = f(1) \right) \implies |f(x)| < \varepsilon$

Proof. For each $\alpha \in \Delta$ put

$$
\alpha^* = \left\{ f \in U \middle| \sum_{y \in \alpha} f(y) = f(1) \text{ and } |f(x)| \ge \varepsilon \right\}
$$

Suppose $f \in \bigcap_{\alpha \in \Delta} \alpha^*$. By Remark 2.5, we obtain $f \in F(L)$. Obviously $A \subseteq f^{-1}(0)$ and $f(x) \neq 0$. This is a contradiction. Thus $\bigcap_{x \in \Lambda} \alpha^* = \emptyset$. Sets of the form α^* ($\alpha \in \Delta$) are closed in the product topological space $[-1, 1]^L$, which is compact by the Tikhonoff theorem. Therefore, there exists a finite $\Delta_{x,\varepsilon} \subset \Delta$ with $\bigcap_{\alpha \in \Delta_{x,\varepsilon}} \alpha^* = \varnothing$. QED

Proof of the Theorem. For arbitrary $x \in L$ and $\varepsilon > 0$ put

$$
\delta_{x,\varepsilon} = \bigcup_{\alpha \in \Delta_{x,\varepsilon}} \alpha
$$

For every $T \subseteq L$ let \tilde{T} denote the smallest, with respect to inclusion, subortholattice of L containing T. (Note that if T is countable, then \tilde{T} is countable.) Now, put $L_1 = \tilde{B}$,

$$
L_{k+1} = \widetilde{L_k \cup \bigcup_{x \in L_k} \delta_{x,1/k}} \qquad (k \in \mathbb{N})
$$

and $L_0 = \bigcup_{k=1}^{\infty} L_k$. Let us show that L_0 is a countable model of L.

It is clear that L_0 is a countable subortholattice of L, L_0 is dense in L, and $A \subseteq L_0$. Suppose that $f \in S(L_0)$. Then there exists $g \in F(L)$ satisfying $g|_A = f|_A$. Put $h = f - g|_{L_0}$. Then $h \in F(L_0)$. Take $\lambda \in \mathbb{R} \setminus \{0\}$ such that $|\lambda h(x)| \leq 1$ for all $x \in L_0$. Put

$$
\varphi(x) = \begin{cases} \lambda h(x) & \text{if } x \in L_0 \\ 0 & \text{if } x \in L \setminus L_0 \end{cases}
$$

Obviously $\varphi \in U$. Let $x \in L_0$. Since $L_1 \subset L_2 \subset \cdots \subset L_k \subset \cdots$, it follows that there exists $k_0 \in \mathbb{N}$ satisfying $k \geq k_0 \Rightarrow x \in L_k$. Since $\delta_{x,1/k} \subset L_0$ $(k \geq k_0)$, we get $\sum_{y \in \alpha} \varphi(y) = \varphi(1)$ for all $k \geq k_0$ and $\alpha \in \Delta_{x,1/k}$. Hence $|\varphi(x)| < 1/k$ $(k \ge k_0)$. Thus $\varphi(x)=0$ and therefore $f=g|_{L_0}$. Since L_0 is dense in L and $g(x) \ge 0$ ($x \in L_0$) for a continuous function g, it follows that $g \in S(L)$. The uniqueness is obvious. QED

3. JAUCH-PIRON PROPERTY

A quantum logic (QL) (Pták and Pulmannová, 1991) is a σ orthocomplete OMP, i.e., an OMP E such that for any sequence (x_i) in E satisfying $x_i \perp x_j$ ($i \neq j$) there exists the supremum $\bigvee_{i=1}^{\infty} x_i$ (usually written as $\sum_{i=1}^{\infty} x_i$.

Let E be a QL. A state on E is a mapping $f: E \to \mathbb{R}$ such that $f(E) \subset$ $[0, +\infty)$, $f(1) = 1$, and $f(\sum_{i=1}^{\infty} x_i) = \sum_{i=1}^{\infty} f(x_i)$ for every sequence (x_i) in E with the property $x_i \perp x_i$ $(i \neq j)$.

Obviously if every chain in E is finite, then the concepts of a state and a finitely additive state on E coincide.

Let f be a state on E. Then f is said to be Jauch-Piron providing

 $x, y \in E$, $f(x) = f(y) = 1 \implies \exists z \in E \quad [z \le x, z \le y, f(z) = 1]$

A OL E is called Jauch-Piron if every state on E is Jauch-Piron.

For each $n \in \mathbb{N}$ let $L(\mathbb{R}^n)$ denote the orthomodular lattice of all subspaces of \mathbb{R}^n . Observe that $L(\mathbb{R}^n)$ is a QL whose every chain is finite.

Proposition 3.1. If $n \ge 3$, then there exists a countable Jauch-Piron subortholattice of $L(\mathbb{R}^n)$ that is not a Boolean algebra.

Proof. By the theorem of Gleason (1957), $F(L(\mathbb{R}^n))$ is finitedimensional. By Theorem 2.2, there exists a countable model L_0 of $L(\mathbb{R}^n)$. Since by the same theorem of Gleason, $L(\mathbb{R}^n)$ is Jauch-Piron, we simply obtain that L_0 is Jauch-Piron, too. Clearly any Boolean subalgebra of $L(\mathbb{R}^n)$ is finite and thus its set of all states has only a finite set of extreme points. The set of all extreme points of $S(L(\mathbb{R}^n))$ and hence of $S(L_0)$ is obviously infinite. Thus L_0 is not a Boolean algebra. QED

The following corollary yields the affirmative answer to the question of Pták and Pulmannová (1991).

Recall that a OL E is called unital if for any $x \in E \setminus \{0\}$ there exists a state f on E with $f(x) = 1$.

Corollary 3.2. There exist unital and countable QLs which are Jauch-Piron and are not Boolean algebras.

4. APPENDIX. AXIOMS FOR Γ_0 **AND** Γ

Let E be an OMP with $0 \neq 1$. Put (as in the text)

$$
\Gamma_0 = \{ \{x, x'\} \mid x \in E \setminus \{0, 1\} \}
$$

$$
\Gamma = \{ \{x, y, z\} \subset E \setminus \{0\} \mid x + y + z = 1 \}
$$

We also put $\mathcal{D} = E \setminus \{0, 1\}.$

Clearly Γ_0 is a partition of $\mathcal D$ consisting of two-element sets. We can identify such partitions with mappings $\theta: \mathcal{D} \to \mathcal{D}$ satisfying $x \in \mathcal{D} \implies x^{\theta \theta} =$ $x \neq x^{\theta}$ (one should take $\Gamma_0 = \{ \{x, x^{\theta}\} | x \in \mathcal{D} \}$).

Obviously we can restore the OMP E with the help of \mathcal{D}, Γ_0 , and Γ :

$$
E = \mathcal{D} \cup \{0, 1\}, \quad \mathbf{0}' = 1, \quad 1' = \mathbf{0}, \quad x' = x^{\theta} \quad (x \in \mathcal{D})
$$

and if x, $y \in E$, then $x \le y \Leftrightarrow x = y$ or $x = 0$ or $y = 1$ or x, $y \in \mathcal{D}$ and $\exists z \in E$ $\mathscr{D}(\lbrace x, y^{\theta}, z \rbrace \in \Gamma).$

So, the question of axioms for Γ_0 and Γ arises.

Let \mathscr{D} be a set, let $\theta: \mathscr{D} \to \mathscr{D}$, satisfy

$$
x \in \mathcal{D} \implies x^{\theta \theta} = x \neq x^{\theta}
$$

and let Γ be a set of three-element subsets of \mathcal{D} .

The following statement gives another characterization of OMPs.

Theorem 4.1. (Ovchinnikov, 1983). The following two conditions are equivalent:

1. There exists an OMP E with $0 \neq 1$, $\mathscr{D} = E \setminus \{0, 1\}$, $\theta = \bigcup_{\mathscr{D}}$, and

$$
\Gamma = \{ \{x, y, z\} \subset E \setminus \{0\} \mid x + y + z = 1 \}
$$

2. (G_1)

$$
\{x, a, b\}, \{x^{\theta}, c, d\} \in \Gamma \implies \exists y \in \mathcal{D} \ (\{a, c, y\} \in \Gamma)
$$

and (G_2)

$$
\{x_1, x_2, x_3\}, \{x_3, x_4, x_5\}, \{x_5, x_6, x_1\} \in \Gamma, x_1 \neq x_4 \implies
$$

$$
\exists y \in \mathcal{D} \ (\{x_1, x_4^{\theta}, y\} \in \Gamma)
$$

REFERENCES

Bunce, L. J., Navara, M., Pt~k, P., and Wright, J. D. M. (1985). *Quarterly Journal of Mathematics Oxford (2),* 36, 261-271.

Gleason, A. M. (1957). *Journal of Mathematics and Mechanics,* 6, 885-893.

Jauch, M. (1968). *Foundations of Quantum Mechanics,* Addison-Wesley, Reading, Massachusetts.

Kalmbach, G. (1983). *Orthomodular Lattices,* Academic Press, London.

Ovchinnikov, P. G. (1983). *F'unktzionalniy Analiz* (Ulyanovsk), 20, 106-114.

Piron, C. (1976). *Foundations of Quantum Physics,* Benjamin, Reading, Massachusetts.

Pták, P., and Pulmannová, S. (1989). *Quantum Logics*, Veda, Bratislava.

Pták, P., and Pulmannová, S. (1991). *Orthomodular Structures as Quantum Logics*, Kluwer, Dordrecht.

Rogalewicz, V. (1991). *International Journal of Theoretical Physics,* 30, 437-445.

Riittimann, (3. T. (1977). *Journal of Mathematical Physics,* 18, 189-193.